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Mathematical Formalism

by James M. Hyman and E. Ann Stanley

successive modifications of the basic equation of epidemiology, the equa-

‘K re will build up the equations for our risk-based model of AIDS through
tion of mass action. Its simplest form is given by

dl 1
a—f—:al(l—ﬁ), (1)

where (¢) is the number infected, N is the total population and « is a constant.
Equation 1 describes the spread of HIV infection by random sexual contact among a
sexually active population of fixed size N. As explained in the main text, if a popu-
lation mixes homogeneously, this equation gives rise to an initial exponential growth
in the number infected with constant relative growth rate of a.

As the number infected becomes comparable to the total population the growth
rate will decrease, so we rewrite Eq. 1 to show that time dependence:
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where §(t) = N — I (¢) is the number of persons susceptible to infection and A(r) =
al(t)/N. So far the only independent variable is time ¢ and A(¢) is the time-depend-
ent relative growth rate of the number infected.

To describe the AIDS epidemic over long times, we must account for individ-
uals who eventually develop AIDS and die. Thus the total population will not re-
main constant but will change with time. We divide the population into three sectors:
the sexually active, uninfected susceptibles S (z); those infected with HIV who do
not have AIDS /(t); and people with AIDS A(r). We assume the susceptibles and
the infected are sexually active (and therefore can infect others) but that those with
AIDS are not. Thus the sexually active population N (¢) is equal to S(¢) +71(¢). More-
over, we assume that people mature, or migrate, into the sexually active suscepti-
ble population and retire from it at a constant relative rate u, so that in the absence
of AIDS the susceptible population would remain constant at the value Sy, that is,
N(t) = S(t) = Sp in the absence of HIV.

We also introduce the parameter ~, the relative rate at which people who are
infected develop AIDS, and 6, the relative rate at which people die from AIDS.

Now we can write down a set of rate equations for changes in S (¢),/(z) and
A(r) with time.

The rate of change in the number infected is like Eq. 2 except the right-hand
side includes negative terms that account for decreases due to conversion to AIDS at
arate v/ (¢) and aging of the infected at a rate ul ()

2O 050 - G+ i, ©)

The number of uninfected susceptibles increases through maturation of “juve-
niles” at a rate uS, and decreases through aging at a rate uS§(r) and through infection
with HIV at a rate A(2)S (r):
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The number of people with AIDS increases through conversion of infecteds at a
rate I (¢) and decreases through death at a rate §A(#):

2O _ 310 - 8400, . s
dt ' , -
The accompanying block dlagram lllustrates the inputs and outputs to each of the
three sectors of the population.
The most important assumptions in any model of AIDS are embedded in the
definition of A(z), the rate of infection per susceptible. In the simple model just pre-
sented, all members of the population are assumed to be equal in their susceptlblhty

and the rate of infection per suscepuble is given by

X =icp —8 . ®

SLCP IAsa)

where the constant i is the probability of infection per sexual contact, the constant
c is the average number of sexual contacts per partner, the constant p is the average
number of partners per year, and ,—(,—){—S)—(B is the infected fraction of the sexually active

population:

STRUCTURE OF THE RISK-BASED MODEL

Independent Variables
C Maturation) (Aging )

uS,y(n us(n

t: Time

1. Time since infection

r: Number of partners per year
Susceptibles

S({n

Dependent Variables

S(t,r): Distribution of susceptibles by
number of partners per year

l(tx,r): Distribution of infecteds by
number of partners per year
and time since infection
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Infecteds
- A(tr): Distribution of AIDS cases by
Itz time since diagnosis

Parameters

Y it

Sy(r): Distribution of susceptibles in
the absence of HIV

Aft,r): Relative rate of at which
AIDS Cases susceptibles with r partners
‘ per year get infected

Altr) . .
w: Relative rate at which people

mature into and retire from
the susceptible population

S (DALY v(): Relative rate of developing AIDS
at a timet after infection

( Death ) 8(1): Relative rate of death at a

time 1 after diagnosis
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Note that this simple model produces exponential growth at the start of the epi-
demic. All members are equally at risk (homogeneous mixing) and the probability of
infection per contact i remains constant throughout the years of infection,

We will now modify the simple model defined by Eqgs. 3-6 to account for two
crucial aspects of the AIDS epidemic. First, since AIDS takes many years to develop
and the infectivity during the period of infection may vary in time, we introduce an
additional independent variable 7, the time since infection. Second, since individuals
who are very active sexually and who change partners frequently have a greater risk
of becoming infected, we introduce the variable r, which quantifies the level of risky
behavior in the sexually active population. In this model, r is defined as the number
of new partners per year.

Using the two new independent variables = and r, we distribute / ),S5(@) and
A(t) over risk behavior and/or time since infection. (See the definitions in the block
diagram.) In addition, the constant Sy is the integral of an equilibrium distribution
over risk behavior, Sy = f0°° So(r)dr. Note that So(r) corresponds to N (r) in the main
text; also the main text presents evidence that So(r) o r~2 for large r.

We can now write down the equations of our risk-based model that correspond
to Egs. 3-5. Equation 3 for the infected population is replaced by Egs. 7a and b.
Equation 7a specifies that the rate at which people of risk r are becoming infected
is A(t,7)S(t,r). Equation 7b says that rate at which the infecteds develop AIDS is
proportional to the conditional probability (), which is a function of the time since
infection, and the rate at which they leave the population is proportional to p.

1(t,0,r) = A(t,r)S(t,7). (Ta)

A@1r) (ONETI) o osremr) = il e, (7b)
Ot or

Equation 8 for the susceptibles has a structure similar to that of Eq. 4 except
that now the rate of infection per susceptible A(z, r) depends on the risk behavior r:

o8(t,r)

Y = plSo(r) — S, r)) — At,7)S (2, r). ®)

Equation 9a says that the rate at which AIDS cases are being diagnosed at time
t is equal to the rate at which infecteds convert to AIDS, v(T) (¢, 7,r), integrated
over all risk behaviors r and times since infection 7. Equation 9b accounts for loss
of AIDS cases due to death.

A(t,O):/ / YOI, T, r)drdr. 9a)
o Jo

OA(t,T) BA(t,T)___

En + 5 = S(DA(L, T). b)

The major change in this new set of equations is the form we assume for A, r),
the relative rate at which susceptibles with r partners per year get infected. We gen-
eralize Eq. 6 to include variation in the degree of sexual contact between individuals
with different risk behaviors as well as variation in infectiousness with time since
infection. The general form of A(z,r) is given by

1@,7,s)

)\(z‘,r)=r/O /0 c(r,s)p(t,r,s)i(v")md'rds, 10)

where c(r, s) is the average number of sexual contacts in a partnership between a
person with risk r and one with risk s,i(7) is the infectiousness at years since in-
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fection, wjf}mz is the probablhty that a person with nsk s w111 be mfected at time T,

and p(t.r,s) is the fraction of the partners of a person with risk r who have risk s.

The total number of sexually actlve people w1th nsk s 1s glven by N (t s) S(t s) +

1@, 7, 5)dr.
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Numerical Results of the Risk-Based Model

by James M. Hyman, E. Ann Stanley, and Stirling A. Colgate

ere we will present numerical
Hsolutions to the full risk-based

biased-mixing model. These so-
lutions validate the simplified version
of the model presented in the main text
and illustrate how variations in the input
parameters affect the predicted course of
the epidemic. The equations and param-
eters of the model are defined in “Math-
ematical Formalism for the Risk-Based
Model of AIDS,” hereafter referred to
as “Math Formalism.” The model tracks
the time evolution of three sectors of
the population: the sexually active sus-
ceptibles S (¢, r); the sexually active in-
fecteds /(¢, T,r); and the people with
AIDS A(z,T,r). It takes into account
deaths due to AIDS and the long time
between HIV infection and conversion
to AIDS. It also allows us to vary as-
sumptions about the infectiousness as a
function of time since infection and the
mixing between various risk groups in
the population.

First we will assess the validity of
the predictions in the main text. The
analytic calculation presented there pre-
dicted that biased mixing among the
sexually active population gives rise to
a saturation wave of infection, which
yields power-law growth in both the
number infected and the number of peo-
ple with AIDS. That calculation was
based on the following assumptions: the
initial susceptible population So(r) is
distributed in risk behavior as r 3 for
r greater than the mean value of r; the
infectiousness / is constant; the cumula-
tive probability of conversion to AIDS
C (1) is zero for the first two years af-
ter infection and then increases linearly
with 7 at a rate such that every infected
individual develops AIDS by 18 years
after infection; and finally, the same
fraction is infected in all risk groups
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before the start of the saturation wave.
The wave of infection was then calcu-
lated as if each risk group had a growth
rate proportional to r and grew to satu-
ration independently of all other groups.
That is, we did not account for mix-
ing between people with different risk
behavior because the calculation is too
difficult to perform analytically. More-
over, AIDS cases and deaths were not
removed from the infected population.
The result was that the number infected
grows as % and the number of people
with AIDS grows at 3,

To check whether mixing among in-
dividuals with different risk behavior
alters that result, we solved the full set
of equations given in “Math Formal-
ism.” We used the same assumptions
and conditions outlined above except
that we allowed mixing between people
with different risk behavior . We found

THE RATE OF INFECTION A(r, t)

that when mixing is restricted to people
whose risk behaviors are within a factor
of 2 of each other, that is, the mixing

is biased, a saturation wave of infection
moves from high- to low-risk groups
and the number infected grows as ¢2,

as predicted by the analytic calculation
in the main text. Also, when mixing

is random, or homogeneous, that is, is
based only on availability, the number
infected grows exponentially, the rel-
ative growth rate is constant, and the
fastest growth occurs in the population
with the most likely risk. Thus, dou-
bling times for biased mixing are shorter
initially and later become longer than
those for random mixing.

Now let’s consider numerical solu-
tions to the full model under more gen-
eral assumptions. We will first com-
ment on their overall behavior and then
present specific solutions. The numer-

The heart of the risk-based model is the complicated functional form of the rate of
infection per susceptible with risk 7, A(r, ) (see Egs. 10 and 13 in “Math Formalism”).

We will describe this function in words:

Rate of Number of Rate of sexual Infectious- Probability that
infection new partners X contact between ness per X a person with
for a per year persons with risk contact risk s is
susceptible behaviors 7 and s infected
o poo | 1 [ 1
t, T
I A (TS ROy ) R GOk CLat Ly
o Jo | N(t,s)

| I

Average number of sexua/ Fraction of partners of a

contacts in a partnership
between persons with risk
behaviors 7 and s

person with risk behavior
7 and who have risk behavior s

The function p(¢, r, s) describes the level of mixing between people with risk behav-
iors r and s. It is defined in terms of an acceptance function f (r, s) that determines
the range from which partners are chosen.
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. ,~1cal results of the model change as

A, and5 (s
. _Formahsm” for the
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/ inmain text

20.0

a person who did not have AIDS before time T develops AIDS at time T. Thus, itis

%‘1’—3%, where C(-r) ls the cumulative probability of developing AIDS at r years

T year for the
ation. The frac-
,AIDS o)
a. Also, for
.0 calculauons
f contacts per
stant ¢.

'k lvary from one

- tial dlslnbutlon So(r) = 20(1 + )‘3 . j W
We also use that form of YT, the con-', j acceptance functlon f (r s) and the in-
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BIASED MIXING FOR
BASELINE SOLUTION

Fig. 2. The numerical solutions presented here
use an inverse quartic function for the accep-

tance function f(r, s):

r—s)° r

f(r,s) = [1 + PR
The figure shows f(r,s) versus s for r =
40, 80, and 150 when € = 0.01. For each value
of r, f(r, s) determines the fraction of partners
with risk s chosen by people with risk r. Here
f(r, s) specifies that most partners of a person
with risk r have risk behaviors between %r and
r; that is, the mixing is heavily biased toward
people with similar risk behavior.

TIME-DEPENDENT INFECTIVITY'

Fig. 3. The mean infectiousness i(T) versus
time since infection (solid line) used in all but
the last solution presented here. The func-
tion i(r) is an average over individuals each
of whom develops AIDS at some time between
2 and 20 years since infection. The average in-
fectiousness of each individual over the time
from infection to AIDS is 0.025. The dotted line
shows the pattern of infectiousness that we
postulate for a single individual. In this case
the individual develops AIDS 8 years after in-
fection. The initial peak of infectiousness for
this individual is always taken to be greater
than 6 months because our numerical tech-
niques are not yet designed to handle sharper

peaks.
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fectiousness per contact since time from
infection i (7).

We present first a “baseline” solution.
The acceptance function f(r, s) and the
infectiousness per contact i(7) for this
solution are described in Figs. 2 and 3,
respectively. The acceptance function
in Fig. 2 is an inverse quartic function
of r and s, which describes the proba-
bility that a person with risk behavior r .
chooses a partner with risk behavior s:

r=-s*1"
f@r,s)= [1+m] )
where € = 0.01 and r,, = 10 partners per
year. The figure shows f(r,s) versus
s for three different values of r. As r
increases, the width of the acceptance
function increases. In rough terms,
this function describes a biased mix-
ing pattern in which a person with risk
r chooses most of his or her partners
from a group that ranges in risk behav-
ior from 1r to 2r.

Figure 3 is a plot of i(7), the mean
infectiousness per partnership versus
time since infection. The mean infec-
tiousness is an average over the infec-
tiousness of many individuals each of
whom develops AIDS at different times
(determined by (7)) since the time of
infection. Figure 3 also shows the in-
fectiousness curve for an individual who
develops AIDS 8 years after infection.
The infectiousness for this individual is
assumed to have an initial peak, a la-
tency period of about four years, and
finally a steady rise. The average infec-
tiousness for each individual is assumed
to be 0.025. The initial peak is about 6
months wide, probably too wide to be
realistic, but our numerical code does
not yet have the capability of resolving
a burst that is only a few weeks in du-
ration. Nevertheless, the wider shape
that we have used serves the purpose of
illustrating what the impact of an initial
peak of infectiousness can be.

The infected population at ¢+ = 0

32

100
®
- 80 -
@
w3
@
(@]
»n 60 |-
Q
<
S sl
K
]
3
QZO—-
0 ! ! ! !
0 2 4 6 8 10

Time (years)

“CUBIC GROWTH” OF
BASELINE SOLUTION

Fig. 6. The cube root of the cumulative num-
ber of AIDS cases as a function of time for the
baseline solution. Although the curve is not
pertectly straight, a £ growth in the cumula-
tive number of AIDS cases is a good fit to this
calculation between t = 1 and t = 9 years.
Thus, despite the many complexities included
in the numerical model, its solutions behave
quite similarly to the analytic caiculation of the
main text. Note that the calculated time scales
are fixed by the average value we assume for
the product ¢(r, s)i(T) and are therefore highly
uncertain.

contains 1000 individuals distributed as
a narrow Gaussian function of r cen-
tered at 175 partners per year and dis-
tributed linearly in 7. Although here we
assume that the epidemic starts among
the highest-risk groups, this choice does
not have a major impact on the numeri-
cal results. In particular, if the infecteds
at t = 0 are centered at the mean, the
epidemic follows a similar course but
starts about 2 years later. If the infect-
eds at t = O are distributed over all risk
groups, the saturation wave takes off
sometime between 0 and 2 years later.
The input parameters and initial con-
ditions just described yield our “base-
line” solution. Figure 4 shows S (¢),1(¢),
and A(?) over a 40-year period. During

that period about half of the population
dies of AIDS. The number infected /(¢)
and the number of people with AIDS

at any given time A(z) rise steadily for
more than 10 years and then decline
slightly as the epidemic reaches a steady
state.

Figure 5 shows plots of the number
infected versus risk behavior at times
t =35, 10, 15, 20 and 25 years. Here
we see that the infection travels as a
saturation wave from high- to low-risk
groups. The wave takes 20 to 25 years
to reach the lower-risk groups.

Figure 6 is a plot of the cube root
of the cumulative number of AIDS
cases as a function of time. The nearly
straight line between 1 and 10 years
shows that the calculation is not in-
consistent with the observation that the
number of AIDS cases grows as ¢> dur-
ing the initial stages of the epidemic.
The main reason that the growth is not
purely cubic is the deviation of the ini-
tial profile So(r) from a pure inverse cu-
bic. However, the profile we chose for
So(r) fits the available partner-change-
rate data much better than does Eq. 13
in the main text. We have also assumed
a fairly large infectivity, which speeds
up the progress of the entire epidemic.
Consequently, by 10 years from the start
of the saturation wave, the wave front
has reached the lowest-risk populations,
which, in turn, slow down the cubic
growth. Although the solution just pre-
sented roughly matches the observed
cubic growth of AIDS, it does not prove
that the input parameters are correct
but rather suggests the basic ingredients
needed to produce the type of epidemic
we are experiencing. A slightly differ-
ent mix of input parameters yields very
similar growth.

The assumption of biased mixing is
the feature that sets this model apart
from other models. Let’s see how the
epidemic changes when this assumption
is relaxed. Figure 7 shows three solu-
tions to the model that differ only in the
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EFFECTS OF VARYING
THE INFECTIVITY

Fig. 9. The distribution of number infected i(r)
as a function of new-partner rate at t = 10
years for the calculations in Fig. 7. This figure
demonstrates most dramatically the effects of
varying the mixing patterns. When people
have a strong bias to mix with others of sim-
ilar risk, few peopie of low risk are infected
in the early stages of the epidemic. In con-
trast, when partners are chosen purely on the
basis of availability, people of low risk are in-
fected early. The fact that early AIDS cases
and early cases of infection were among peo-
ple with high new-partner rates is evidence for
biased mixing in the U.S. population.

level of mixing among different risk
groups. The solid lines show the base-
line solution in which the mixing is
strongly biased; that is, f(r,s) is an in-
verse quartic with € = 0.01 (see Fig. 2).
The dotted lines show a solution with
less bias; that is f(r,s) is again an in-
verse quartic but € = 0.17 so the curves
of f(r,s) versus s for different values
of r have much wider peaks than those
in Fig. 2. The dashed lines show a so-
lution with no bias; that is, f(r,s) = 1
corresponding to random, or homoge-
neous, mixing. Note that as the mixing
becomes less biased, the epidemic starts
off slightly later but then grows faster
because the doubling time increases at a
slower rate.

Figure 8 shows the cumulative num-
ber of people with AIDS as a function
of time for the three types of mixing.
For random mixing, the number of
people with AIDS grows nearly ex-
ponentially; that is, the doubling time
is nearly constant. As the mixing be-
comes more biased, the number of peo-
ple with AIDS grows more like a low-
order polynomial.

It is worth cautioning that the initial
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distribution of infecteds, which is arbi-
trary, can have a significant impact on
the early growth of the epidemic, espe-
cially if the initial growth rate is low.
For the random-mixing case, growth in
infections is so low initially that most
people getting AIDS in the first 10 years
were infected at 1 = 0. Consequently,
since those infected at ¢+ = 0 were dis-
tributed linearly with 7, the number of
AIDS cases grows as a polynomial dur-
ing the first 10 years, and only the num-
ber infected grows exponentially. After
10 years both the number infected and
the number of AIDS cases grow expo-
nentially. For the cases of more-biased
mixing, the initial growth in number of
infecteds is more rapid, so the initial
distribution 7 (0, 7) affects the solutions
for a shorter period of time. Since our
initial conditions are arbitrary, rather
than based on knowledge of the earliest
stages of the epidemic, the solution tran-
sients just described are also arbitrary.
Figure 9 shows the number infected
versus risk behavior at 7 = 10 years
for each of the three mixing patterns.
We see that random mixing not only
produces a faster-growing epidemic but

also causes the epidemic to reach the
low-risk groups almost immediately.
Figures 4a and 4b of the main text also
illustrate that point. The solution with
biased mixing shows a saturation wave
of infection traveling from high-to low-
risk groups, but the solution with homo-
geneous mixing shows no such wave.
Instead, the majority of those infected
are always in the low-risk groups. Since
the average partner rates for the earliest
AIDS cases and infected homosexuals
were high compared to the mean in the
general homosexual population, these
numerical results support the conclusion
in the main text that biased mixing has
produced the cubic growth of the AIDS
epidemic.

We will now examine the effects of
varying the function i(7), the infectious-
ness since time of infection. In the main
text we used a constant value of i(7),
but we also discussed the effects of a
variable infectiousness. Here we display
four solutions, each of which uses a dif-
ferent function for i(7) (see Fig. 10).

In all cases the mean infectiousness of
an individual over the course of infec-
tion is 0.025. The solid lines correspond
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Without better data for i(7), the fu-
ture course of the present epidemic
cannot be estimated. Similarly, ade-
quate data on the mixing patterns among
different risk groups is sadly lacking.
0 nothmg else, our risk-based model
points out the areas for which more data
 are needed. We hope that this work
will help to guzde the data collectwn
_and analys1s efforts that are now under
,way I ' ~
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The Seeding Wave

by Stirling A. Colgate and James M. Hyman

et us assume that our risk-based
I model is a reasonable description

of how AIDS has grown since the
time when a member of the highest risk
group was infected. In other words, we
assume the infection spread as a satura-
tion wave from the highest risk group
down through lower and lower risk
groups. The question remains—what
happened before the start of the satura-
tion wave? Did an individual from the
highest risk group become infected first
and start the saturation wave immedi-
ately, or did an individual from a much
lower risk (and therefore much larger)
group start a slow spread of infection
from lower to higher groups prior to
the saturation wave? We call a slow
spread of infection from lowest to high-
est risk groups a seeding wave. Now,
if a seeding wave were started, do sub-
sequent seeding events circumvent the
slow spread by leapfrogging the infec-
tion to the highest risk group, thereby
reducing the number infected before the
start of the saturation wave?

Here we present a model of a seeding
wave consistent with our saturation-
wave model of subsequent growth. In
particular, the model incorporates the
same distribution of risk behavior and
assumptions about biased mixing used
in our risk-based model. We argue that,
provided these assumptions are correct,
the seeding wave is a likely scenario for
the early spread of HIV infections in
the United States. Moreover, the model
predicts that the earliest HIV infection
occurred in the mid-sixties, a prediction
consistent with the first recognized case
of AIDS in St. Louis in 1969.

Early Growth. Suppose the first infec-
tion in the United States is initiated, say,
by either a visitor with HIV or a U.S.

person visiting elsewhere. Although
these two cases would not be equivalent
if high risk of infection is correlated
with high rate of travel, we will not
consider such correlations here. Rather,
we assume that risk of infection can be
quantified using a single variable r with
its distribution N (r) defined by Eq. 13
in the main article. Since the probability
of a person becoming infected is pro-
portional to r, the probability P (r) that
at least one individual with risk r or
greater becomes infected is given by

P(r)oc/ooN(r)rdr=r"1, (1s)

for r > 1, that is, for the high-risk end
of the population defined by Eq. 13.
Hence, the smaller r is, the greater is
the probability that at least one individ-
ual of risk group r becomes infected de-
spite the lower risk per individual. Also,
the most likely case is that the first in-
fected individual was a member of the
average group, the group with r = 1.

A Simple Numerical Model. We wish
to model the progression of the infec-
tion to higher risk groups starting with
an infected individual close to the av-
erage. To help understand this process,
we simplify by saying that the kth risk
group r; varies in risk behavior by a
factor of 2, that is, r varies from e to
2r;. Hence, the various groups will
have risk behaviors 1, 2, 4, 8... times
the average. The number of individu-
als for > 1 in the kth group (using
Eq. 13) is

2)}

Tk

T (2s)
Nork—z. )

1
N(r)dr = —ENOr_ler"

oW
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was infected and, hence, later became
the likely first case of AIDS? (2) Is

the predicted risk behavior of the early
cases of AIDS, inclusive of the seed-
ing wave, consistent with the high mean
risk behavior of the early AIDS cases
observed by the Centers for Disease
Control (CDC)? (3) What is the proba-
bility that the whole process of group-
to-group progression is circumvented
by one high-risk individual becoming
infected early in the seeding process?
(4) Is the seeding process consistent
with our perception that all major de-
mographic groups participated in a near
simultaneous start, that is, synchroniza-
tion of the saturation wave?

Infection Time. We would like to as-
sociate a real time with the time step #
of Eq. 4s and then take the sum 57 #
as the total, or maximum likely, time of
the seeding wave. This then becomes
the maximum time prior to 1979.2 that
the first person in the United States was
likely to have been infected.

In the seeding-wave process, the
growth rate of any given group is (1 —
F)ar,, where the factor (1 — F) rec-
ognizes that out-of-group mixing is not
balanced by equal and opposite in-group
mixing. We now use the current growth

rate of the group at the front of the satu-
ration wave to calibrate (1—F)a. In this

way, we derive a very rough estimate
for the maximum time of the seeding
wave,

Figures 2 and 3 of the main article
indicate that, at the time 1988.2, the ho-
mosexual fraction was approximately
65 per cent of our estimated one mil-
lion infected, which is 650,000 infected,
or éth of our estimate of the total num-
ber of active homosexual population
of 4 million. This estimate places the
presently infected population partly in
group 1 with all higher groups near sat-
uration. The total population already
infected in the higher risk groups is
;—‘Nz, or roughly 330,000 (Eq. 2s). Thus,
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about the same number must be infected
in group 1 so that the total is 650,000.

It has required 9 years for the seeded
fraction of 81 individuals in group 1 to
grow to 320,000, which gives a growth
rate of (1 — F)a = §1n 3290 = 0.92 per
year or a doubling time of 0.75 years.
Thus, the apparent growth rate for the
total epidemic, which must be averaged
over both group 1 and all higher risk
groups——groups that, by now, are almost
saturated, gives a doubling time that
is roughly twice as large, or 1.5 years.
This doubling time is to be compared
to the present deubling time for infec-
tion predicted by our saturation-wave
model, which, at 7 + 2 = 9 years, is
(3dl /dt)~"'In2 = 0.691/2 = 3 years.
The three-year doubling time corre-
sponds to a two-year doubling time
for AIDS, in agreement with present
CDC estimates of 1.75 years. Thus, our
saturation-wave model is consistent with
the CDC data but inconsistent with the
simple seeding-wave growth by a factor
of two. One source of discrepancy is
our incomplete treatment of the effects
of out-of-group mixing. We therefore
estimate that the growth rate in group 1
is bounded by a doubling time of 0.75
to 1.5 years.

In Eq. 2s we have neglected group 0
(0 < r < 1) with 3.3 million indi-
viduals. The first individual infected
is equally likely to be in group O or 1
because the average value of N (r)r is
approximately the same for both groups.
We neglected group O to simplify the
seeding-wave calculation, but since our
estimates for the doubling time are too
short, we must now recognize that the
initial infected individual most likely
had a lower mean risk than group 1 and
that the mean growth rate is between
the growth rate of two groups. As a
rough approximation, let us say that
the mean growth rate is lower by a fac-
tor of 1//2. Then the doubling time
of the combined group average will be
0.75\/5 to 1.5\/§ years, or 1.1 to 2.2

years. This then becomes a rough esti-
mate of the doubling time of the seeding
wave.

First Infection. The date for the begin-
ning of the saturation wave or power-
law (¢%) growth of infection was 1979.2
(Eq. 24). But the seeding-wave model
suggests that the first infection in the
United States may have occurred In(( %— +
1)*)/In2 =~ 6 doubling times earlier,

or 7 to 14 years earlier. The date of

the first infection thus may fall some-
where between 1972 to 1965, earlier
than has previously been estimated.
Thus, the singular case of a teenage boy
in St. Louis who has now been identi-
fied as having died of AIDS in 1969 is
consistent with our seeding-wave pic-
ture if he was infected up to five years
before developing AIDS. The existence
of this case of AIDS in 1969 implies

a slow growth of the number infected
before the start of the saturation wave.

Mean Risk Behavior. We wish to
confirm that our model of the seeding
wave, which starts in relatively low-risk
groups, is consistent with the CDC ob-
servation that most early cases of AIDS
were among high-risk individuals. The
mean risk behavior of those develop-
ing AIDS can be calculated using a
convolution integral similar in struc-
ture to Eq. 26, but one emphasizing risk
rather than time since infection. How-
ever, here we are really interested in
risk behavior versus time and the abso-
lute number of cases of AIDS, because
it was the occurrence in 1981 of roughly
50 AIDS cases in a relatively short pe-
riod of time (approximately 6 months)
that caused the recognition of an epi-
demic.

We next must define high- and low-
risk behavior in terms of our seeding-
wave model. The new-partner rate of
the homosexual population in London
SDT clinics (Fig. 5 in the main text) has
a mean of roughly 24 partners per year.
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We associate this new-partner rate with  infect one op' 1anons had to be
. group 1 of the seeding-wave model. s within tk ~
; Group 2 would then have a mean rate of the other
48 new partners per year—well within  this fa
the CDC definition of extremely high
_ risk behavior. Thus, moderate or low
 risk behavior is restricted to groups 1
 and 0 with doubling times of 1.1 to 2.2
, years and 0.8 to 1.6 years, respectively.  the ¢
By 1979 these two groups would each  smal within
have infected (£ + 1)? ~ 81 individuals. risk gro high-
Two years later, in 1981, the combined
_ groups would be producing AIDS cases
~ at arate of 6 per cent per year, that is, -
~ 0.06 x 2 x 81, or 10 cases per year. The she
_ total cases for 1981 was several hun- ot
~ dred, so these 10 additional moderate-
. risk cases would, by comparison, be
negligible. Thus, we believe that the  tio
seeding-wave model is consistent with  the
the CDC observation that high-risk be-  an
havior was strongly correlated with the
AIDS cases at the start of the epidemic.

Bypassing the Seeding Wave. Of
course, this slow growth for 7to 14

years in group 1 could have been by

. passed by one member of any group

. with r > 2 becoming infected at the a :

_ beginning. The probability of this hap-  the mai i oup until
_ pening per infection in group k — 1is, ity c bahility
_for each group, proportxonal to Nyry o< he

_ F /(2ry) per group, discounting mixing  cor
 biases. Therefore, the probability that ‘
at | least one member of higher risk be- ;
comes infected, exclusive of the seedmg  wave
71wave becomes -

£

That is, when one member of group 2
i;becomes infected, it is equally hkely

; ‘Vfactor of 12 or less, or Just the ume'to
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